Visit UCR Return to Campus website - Take the COVID Screening Check survey

Breadcrumb

Colloquium: Michelle Khine

Michelle Khine
-
Winston Chung Hall 232

SMART: Shrink Manufacturing Advanced Research Tools

Michelle Khine, Ph.D.  
Associate Professor  
Departments of Biomedical Engineering, and Chemical Engineering & Materials Science
UC Irvine


The  challenge  of  micro-  and  nano-fabrication  lies  in  the  difficulties  and  costs  associated  with  patterning  at  such high resolution. To make such promising technology – which could enable pervasive health monitoring and disease detection/surveillance  –  more  accessible  and  pervasive,  there  is  a  critical  need  to  develop  a  manufacturing  approach  such  that  prototypes  as  well  as  complete  manufactured  devices  cost  only  pennies.  To  accomplish  this,  instead  of  relying  on  traditional  fabrication  techniques  largely  inherited  from  the  semiconductor  industry,  we  have  pioneered   a   radically   different   approach.   Leveraging   the   inherent   heat-induced   relaxation   of   pre-stressed   thermoplastic sheets – commodity shrink-wrap film – we pattern in a variety of ways at the large scale and achieve our desired structures by controlled shrinking down to 5% of
 the original, patterned sizes. This enables us to ‘beat’ the  limit  of  resolution  inherent  to  traditional  ‘top-down’  manufacturing  approaches.  With  these  tunable  shape  memory  polymers,  compatible  with  roll-to-roll  as  well  as  lithographic  processing,  we  can  robustly  integrate  extremely  high  surface  area  and  high  aspect  ratio  nanostructures  directly  into our  microsystems.  Importantly,  our  metallic  nano  structures  (self-assembled  due  to  the  stiffness  mismatch  between  the  thin  metal  film  deposited  on  the  retracting  plastic  sheet)  have  demonstrated  unprecedented electromagnetic  field  enhancements.  This  ultra  rapid  fabrication  approach  therefore  results  in  field-compatible  plastic  based  microfluidic  systems  with  integrated  nanostructures  for  robust  signal  amplification.  This  design-on-demand  approach  to  create  a  suite  of  custom  biomedical  tools  for  low  cost  diagnostics  including  sample  prep  with  magnetic  nanotraps,  embedded  on-chip  electrodes,  microlens  arrays,  surface enhanced  sensing  substrates,  patternable  superhydrophobic  surfaces  for channeless microfluidics, and flexible electronics. 


Michelle Khine is currently an Associate Professor of Biomedical Engineering, Chemical Engineering and Materials Science at UC Irvine. She was an Assistant & Founding Professor at UC Merced (‘06‐’09). Michelle received her BS  and  MS  from  UC  Berkeley  in  Mechanical  Engineering  (’99  and  ’01,  respectively)  and  her  PhD  under  Luke  P  Lee in Bioengineering (’05) from UC Berkeley and UCSF. She was the Scientific Founder of Fluxion Biosciences, Shrink Nanotechnologies and, most recently, Novoheart. Michelle was the recipient of the TR35 Award and named one  of  Forbes  ’10  Revolutionaries’  in  2009  and  by  Fast  Company  Magazine  as  one  of  the  '100  Most  Creative People in Business' in 2011. She was awarded the NIH New Innovator's Award, was named a finalist in the World Technology  Awards  for  Materials,  and  was  named  by  Marie‐Claire  magazine  as  'Women  on  Top:  Top  Scientist'.  She  is  currently  working  on  starting  a  novel  'co-op'  with  her  students,  'A  Hundred  Tiny  Hands',  and  is  spearheading a new graduate program focused on Biomedical Engineering Entrepreneurship, BioENGINE, at UC Irvine.

Type
Colloquium
Admission
Free
Tags
Colloquium